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Abstract Bone fragility is a major health concern, as the
increased risk of bone fractures has devastating outcomes
in terms of mortality, decreased autonomy, and healthcare
costs. Efforts made to address this problem have consid-
erably increased our knowledge about the mechanisms that
regulate bone formation and resorption. In particular, we
now have a much better understanding of the cellular
events that are triggered when bones are mechanically
stimulated and how these events can lead to improvements
in bone mass. Despite these findings at the molecular level,
most exercise intervention studies reveal either no effects
or only minor benefits of exercise programs in improving
bone mineral density (BMD) in osteoporotic patients.
Nevertheless, and despite that BMD is the gold standard for
diagnosing osteoporosis, this measure is only able to pro-
vide insights regarding the quantity of bone tissue. In this
article, we review the complex structure of bone tissue and
highlight the concept that its mechanical strength stems
from the interaction of several different features. We
revisited the available data showing that bone mineraliza-
tion degree, hydroxyapatite crystal size and heterogeneity,
collagen properties, osteocyte density, trabecular and cor-
tical microarchitecture, as well as whole bone geometry,
are determinants of bone strength and that each one of
these properties may independently contribute to the
increased or decreased risk of fracture, even without
meaningful changes in aBMD. Based on these findings, we
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emphasize that while osteoporosis (almost) always causes
bone fragility, bone fragility is not always caused just by
osteoporosis, as other important variables also play a major
role in this etiology. Furthermore, the results of several
studies showing compelling data that physical exercise has
the potential to improve bone quality and to decrease
fracture risk by influencing each one of these determinants
are also reviewed. These findings have meaningful clinical
repercussions as they emphasize the fact that, even without
leading to improvements in BMD, exercise interventions in
patients with osteoporosis may be beneficial by improving
other determinants of bone strength.

1 Introduction

Osteoporosis is defined as a skeletal disorder characterized
by compromised bone strength predisposing to an
increased risk of fractures, but the clinical criterion for
making a diagnosis of osteoporosis is based only on the
bone mineral density (BMD) score, which has to be —2.5
standard deviations or lower than the average bone mass of
healthy young adults to enable a diagnosis [1]. BMD is
then the chief parameter for diagnosing osteoporosis and a
major surrogate for assessing how bone tissue responds to
interventions for the improvement of bone health. Never-
theless, the majority of fragility fractures occur in indi-
viduals who do not have osteoporosis according to these
standards [2-6], stressing the notion that BMD is just one
among several indicators of bone health and that assess-
ment of fracture risk should also rely on other bone prop-
erties. Our aim is to identify what these other properties
are, their importance to whole bone strength, and what
experimental findings exist showing that they can be
modified by physical exercise.
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BMD variance only explains a portion of the bone
mechanical strength variance since age-related declines in
bone strength are disproportionately steeper than decreases
in BMD [7]. Reductions in fracture risk following bis-
phosphonate treatment are also frequently disproportionate
to changes in BMD [8-12], suggesting that improvements
may be obtained without BMD increases, while increases
of up to 35 % in BMD following sodium fluoride treatment
have been associated with increases in fractures [13, 14].
Newer imaging methods, such as quantitative computer-
ized tomography (QCT), can complement dual-energy
X-ray absorptiometry (DXA) information due to its ability
to assess volumetric BMD and bone geometry and to dif-
ferentiate between cortical and trabecular bone compart-
ments [15]; it has also shown moderate to high correlations
with DXA-derived areal BMD (aBMD) measurements [16,
17]. Some studies argue that QCT provides a significantly
better prediction of vertebral [18, 19] and femoral neck
[20] strength than DXA, while others have shown that bone
strength prediction by QCT in the femoral neck is only
marginally superior [21, 22] or even inferior [23] to DXA.
It is therefore apparent that, despite newer imaging tech-
niques looking promising, a significant portion of fracture
risk variation is still not captured by these methods.

It is well established that the skeleton benefits from
regular physical activity. Bone mass is generally higher in
athletes than in sedentary individuals [24-30], and pro-
spective studies show that exercise increases bone mass in
humans [31-34] and experimental animals [35-38]. While
substantial at young ages [39-42], exercise-induced
increases in BMD are minor in adults [43—49]. In spite of
this apparently minute effect, sedentary behavior is a
known risk factor for hip fracture [50], with physically
active men and women having up to half the risk of hip
fracture than sedentary counterparts [51, 52]. Then, if only
minor increases in BMD are attained with exercise, this
reduction in fracture risk in physically active adults must
be achieved by modifying other meaningful properties that
contribute to bone strength, independently of BMD, as well
as other non-skeletal variables, such as falling risk, that
significantly influence fracture occurrence [53, 54]. It is
thus remarkable that BMD changes are still the main sur-
rogate for assessing exercise-induced bone health
improvements despite the findings showing that improve-
ments in mechanical bone properties are independent of
changes in BMD [37, 55-57], and may be, for instance, due
to changes in the bone shape [55, 57] or matrix composi-
tion [58, 59] and may even be obscured by extraosseous
[60] and bone marrow adipose tissue distribution changes
associated with exercise [61], as they significantly increase
the inaccuracies of the DXA measurements. It should then
be argued that a decrease in BMD is one of the possible
manifestations of osteoporosis and that bone strength or
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fragility is multifactorial. The aim of this review is there-
fore to discuss a variety of points concerning skeletal
health, which make up this complex array of determinants
of bone strength and fragility. Moreover, the modifications
of bone quality by exercise training or regular physical
activity will be considered to draft a picture about exercise-
dependent bone health benefits.

2 What are the Modifiable Properties in Bone that
Influence Its Strength?

Bone strength is the maximal amount of load tolerated
before structural failure occurs [62]. Failure gradually
builds within the material as micro-cracks develop when
strains reach an unbearable critical limit [63]. Bone
strength and toughness are therefore highly dependent on
the ability of the bones to dissipate the stresses that lead to
increases in strain, as well as by the micro-structural
properties that prevent crack propagation.

The higher resolution of newer imaging and mechanical
testing procedures [64, 65] has highlighted the significance
of several bone properties other than BMD for bone
strength. It is now well established that several factors,
organized in a hierarchical fashion [66], contribute to bone
strength [67-69] and are therefore regarded as determi-
nants of bone quality [70]: (i) whole bone morphology,
defined by the amount and distribution of bone tissue; (ii)
the overall composition of bone tissue, depending on the
proportion of hydroxyapatite, water, type I collagen, and
other non-collagenous proteins; and (iii) the biophysical
properties of these components, such as the degree and type
of collagen cross-linking and the mineral crystal size and
their crystallinity [70] (Fig. 1). Therefore, impaired bone
strength might result from decreases in the amount of bone
mass, changes in bone micro-architecture or geometry, in
the biophysical properties of the bone tissue, or even from
a combination of all the previous. To complicate things
further, many of these properties have a U-shaped rela-
tionship with bone strength (i.e., bones may become fragile
because they have a too low [71] or a too high [72, 73]
degree of mineralization), and properties that might
increase resistance to one kind of mechanical demand (i.e.,
static loading) may be deleterious in other kinds (fatigue
loading), all depending on the type of stress to which the
bone is being subjected [74]. We can take, for example,
bisphosphonates, which by inducing osteoclast death
decrease bone turnover [75, 76], consequently increasing
the degree of bone mineralization [77] and thereby
decreasing fracture risk [78]. Teriparatide, by increasing
bone turnover [79, 80], instead leads to an average decrease
in bone tissue mineralization [81], and yet is also shown to
decrease fracture risk [9, 82]. These examples emphasize
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that, as other determinants of bone strength besides min-
eralization degree are also affected by these drugs [71, 83],
looking to just one of the determinants can be extremely
deceiving. This is why it is important to recognize the
several determinants of bone strength and fragility and how
they are affected by disease and by the interventions
designed to improve bone health, namely by exercise.

2.1 Bone Material Properties

Bones are composite materials made predominantly of type
I collagen and, to a minor extent, of other non-collagenous
proteins and proteoglycans [84] in which hydroxyapatite
crystals are laid down to grow during biomineralization
[85]. This two-phase composite nature of the bone fabric
enables it to absorb stresses by elastic deformation and to
endure high loads before fracturing. The mineral phase is
mainly responsible for the ability to resist deformation
(stiffness), while collagen fibers allow energy absorption
(toughness) [68, 84]. Therefore, variations in either fraction
may affect the bone mechanical properties and thereby the
fracture risk.

2.1.1 Organic Matrix

Type I collagen is laid down by osteoblasts during bone
formation. It is first synthesized as the precursor procolla-
gen, formed by three polypeptide chains in a triple helix,
stabilized by post-translational modifications and disulfide

Determinants of bone strength and fragility

Whole bone

geometry
Bone size » Cortical
thickness * Moment of inertia
* Femoral neck geometry

Microarchitecture
Trabecular connectivity * Trabeculae shape
Cortical porosity * Tissue organization
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Fig. 1 The several traits influencing bone strength are schematically
depicted in the left of the figure. The base of the pyramid is
represented by the properties of bone tissue, which comprise the
relative amount and biophysical properties of either the organic or the
inorganic components. The centre of the pyramid shows the micro-
architectural properties that are defined by the way the bone tissue is
spatially organized inside the trabecular and cortical components.
Finally, at the top of the pyramid, supported by the remaining

bonds. Following secretion into the extracellular matrix,
procollagen is cleaved of the N- and C-terminals, enabling
spontaneous self-assembly into collagen fibrils that are
further stabilized by post-translational modifications that
allow the formation of intermolecular and interfibrillar
cross-links [86].

The importance of collagen for bone strength becomes
obvious in pathologies such as osteogenesis imperfecta
[87] and scurvy [88-90], in which a deficient collagen
structure substantially increases fracture risk. Inter- and
intra-chain cross-links are a key feature for the mechanical
properties of collagen, since they maintain polypeptide
chains in a closely organized fibrillar structure. Cross-links
can be formed by enzymatic and non-enzymatic processes,
namely by the formation of advanced glycation end-pro-
ducts (AGEs) [86]. The most abundant enzymatically
derived collagen cross-links are pyridinoline and deoxy-
pyridinoline, while pentosidine is the most common AGE-
derived cross-link [86].

Abnormalities in collagen cross-links have been asso-
ciated with increased fracture risk [91-93]. Low pyridini-
um cross-link content was shown to reduce bending
strength by 26 % and the elastic modulus by 30 % in bone
from experimental animals despite unchanged bone mass
[91], and bone strength in humans was reported to be
associated to the cross-links profile [92]. For instance, in
vertebral trabecular bone, pyridinoline cross-link content
was correlated with ultimate strain, while the pyridinoline/
deoxypyridinoline ratio was correlated with ultimate stress

Bone properties assessment
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determinants, the gross morphological traits that define whole bone
geometry are represented, which are key determinants for the way the
bones dissipate the stresses generated during loading periods. The
right half of the figure lists some of the numerous laboratory methods,
ranging from a nano-scale to the macro-scale, that can be used to
investigate these bone properties. DXA dual-energy X-ray
absorptiometry
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and elastic modulus [93]. Collagen assembly and cross-link
formation [94] are also influenced by non-collagenous
proteins present in the bone matrix; hence, these are also
suggested to influence the collagen mechanical properties
[95]. Collagen fiber orientation was also identified as an
important predictor of bone tensile strength [96]. SAMP6
mice, for instance, which have weak and brittle bones, have
disorganized collagen fibrils and a low overall collagen
content [97].

Glycation is a common protein post-translational mod-
ification mediated by reactive aldose or ketose sugars and
other metabolic intermediates that can react with free
amino groups in lysine, hydroxylysine, or arginine resi-
dues, forming adducts to proteins or promoting protein
cross-linking [98]. Non-enzymatic cross-links due to gly-
cation are associated with deterioration of bone mechanical
properties (Fig. 2). Several in vitro studies show that an
increase in bone AGEs increases tissue brittleness, assist-
ing with the accumulation of micro-damage that decreases
bone strength [99-101]. Non-enzymatic glycation tends to
increase with aging in human bone and is associated with
decreases in bone toughness [102].

As previously mentioned, the amount of strain that bone
tissue can withstand before fracturing is largely dependent
on the ability of the bone tissue to dissipate forces applied
to it, preventing in this way the formation of micro-cracks
[63]. This illustrates the importance of limiting non-enzy-
matic glycation for the maintenance of optimal bone
mechanical properties. Studies performed on human
cadaveric vertebral bodies demonstrate that the ability of
individual trabeculae to deform correlates with the amount
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Fig. 2 The relationship between femur maximal load (unadjusted for
the animal’s weight) assayed by three-point bending and the degree of
pentosidine cross-links in the bone matrix in spontaneously diabetic
rats. It appears that the degree of collagen glycation is considerably
elevated in diabetic rats, and that above a certain degree of
pentosidine concentration, the femur maximal load is negatively
influenced [284]
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of pentosidine cross-links; this was assumed to contribute
to about 9 % of the deformation variance [103]. AGE-
associated cross-links are also major contributors to the
increased bone fragility in patients with diabetes, espe-
cially type II diabetes, who commonly have increased
BMD [104, 105]. Women with higher levels of urinary
excretion of pentosidine are also at higher risk of having
vertebral fractures [106], and it was recently recognized
that FRAX® (fracture risk assessment tool) underestimates
fracture risk in patients with diabetes as it disregards bone
matrix changes [107], among other abnormalities [108].

It appears that not only is the proportion of bone con-
stituents abnormal in fragile bones, but also the matrix
composition. Bones from osteoporotic patients were shown
to have an altered expression of type III and IV collagen
when compared with healthy individuals [109]. However,
the major differences reported between osteoporotic and
normal bones are in terms of collagen hydroxylation and
cross-link formation. For instance collagen from the fem-
oral head of osteoporotic women has a higher degree of
hydroxylated lysine residues than that from non-osteopo-
rotic women [110], and collagen from bone of otherwise
healthy premenopausal women with spontaneous low-
trauma fractures displays a higher ratio of non-reducible/
reducible collagen cross-links than normal [111].

Despite the limited number of studies investigating
alterations of the organic bone matrix induced by exercise,
there are still some findings suggesting that exercise may
improve its biomaterial properties [55, 112—-114] and that
lack of mechanical stimulation also leads to abnormalities
in bone collagen structure [115]. Experiments on mice, for
instance, show that exercise increases the tensile strength
of de-mineralized bones despite no changes in the total
amount of collagen or collagen cross-links [112], sug-
gesting that changes in mechanical properties may be
attributed to improvements in collagen network organiza-
tion. Improvements in bone strength, stiffness, and ductility
in exercised mice have also been reported despite no
changes in bone size or shape [113]. Tissue-level
mechanical testing of bones from exercised rats also
showed a significantly higher post-yield deformation in the
tibiae [114] and a higher ultimate toughness and post-yield
toughness in the femur than that from sedentary controls,
despite no differences in bone mass or geometry [55].
Biomechanical improvements of the bone matrix in exer-
cise-trained experimental animals might be associated with
enzymatically mediated collagen post-translational modi-
fications [116] or even with improvements in the collagen
network organization [117]. However, this particular area
clearly warrants further research. It has also been suggested
that exercise, by influencing bone turnover, may promote
the renewal of bone matrix collagen and thereby limit the
formation of non-enzymatic cross-links [118]. However,
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there are no experimental
hypothesis.

findings supporting this

2.1.2 Inorganic Matrix

The bone tissue inorganic fraction is of crucial importance
for bone strength and stiffness [68, 72, 84]. The degree of
mineralization, for instance, correlates significantly with
bone tissue elastic modulus and maximal strength, even
after adjusting for bone tissue volume and micro-archi-
tecture [72] (Fig. 3). Treatment with bisphosphonates was
also shown to increase bone mineralization, thereby
decreasing fracture risk without changes in bone tissue
volume or micro-architecture [119]. The degree of bone
tissue mineralization is mostly determined by the rate of
bone turnover [75]. During the formation of new bone,
osteoblasts secrete the organic matrix that initially serves
as a scaffold for the formation of the primordial mineral
templates (primary mineralization). New bone then pro-
gressively undergoes further mineralization (secondary
mineralization), due to a gradual increase in mineral crystal
number and size [85]. If bone turnover is too high, sec-
ondary mineralization does not occur efficiently, as this
slow process does not have sufficient time to finish before a
new remodeling unit reabsorbs the new bone again, leading
to a decrease in the overall bone mineralization and con-
sequentially to a decrease in bone stiffness [77, 120, 121].
Adequate balance between bone formation and resorption
is therefore crucial for bone quality, and several studies
have highlighted its contribution to skeletal fragility. For
instance, fracture incidence in post-menopausal women
was shown to be associated with the rate of bone resorp-
tion, independent of other fracture risk predictors, such as
BMD or previous fractures [122]. Changes in bone turn-
over markers, but not in BMD, have also been associated
with vertebral fracture reduction in women undergoing
treatment with raloxifene [123]. Interestingly, it was esti-
mated that BMD changes only explain about 4 % of the
fracture risk reduction in patients undergoing raloxifene
therapy, while the remaining 96 % is attributable to
improvements in other BMD-independent properties [124],
making raloxifene therapy studies a very good example of
the extent to which bone mechanical properties can vary
independently of BMD changes.

Excessively increased bone mineralization may also
compromise bone strength and increase the risk of atypical
fractures that, although an infrequent outcome in patients
enrolled in long-term treatment with bisphosphonates, are a
growing clinical concern [125, 126]. Bone tissue at atypical
fracture sites, for instance, has been shown to be heavily
mineralized [127]. As excessively reduced bone turnover
decreases the renewal of bone tissue, it consequently
increases the accumulation of older and more extensively
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Fig. 3 The results of a 3-point bending biomechanical test performed
on the femur of two different experimental animals of the same age
but with different degrees of mineralization. It shows that the more
mineralized bone has a higher Young modulus (slope of the stress—
strain curve within the elastic region during the bending test) and
achieves a higher maximal stress than does the less mineralized bone
(unpublished observations)

mineralized bone [77, 128], which has two main biome-
chanical disadvantages. First, it makes bone more brittle
[129], and therefore unable to absorb energy by elastic
deformation. Consequently, loads applied during everyday
movements will be dissipated through structural failure,
initially by developing micro-cracks that progress until
eventually reaching complete fracture. Second, one of the
main purposes of bone turnover is to selectively remove
damaged old bone and replace it with new, mechanically
more competent bone tissue. An excessively low bone
turnover rate, therefore, leads to the accumulation of
damaged bone [130, 131], with reduced elastic properties
[132], facilitating micro-crack proliferation and fracture
occurrence. Therefore, it is not surprising that too much
suppression of bone turnover during long-term use of anti-
resorptive therapies has been associated with the occur-
rence of spontaneous fractures and with fractures failing to
heal [133]. An adequate rate of bone turnover is therefore
necessary for achieving a properly mineralized bone
structure that best combines stiffness and brittleness, since
hypomineralized bone tends to be very weak, and hyper-
mineralized bone too brittle.

Still, what matters is not only the degree of minerali-
zation but also the individual characteristics of the
hydroxyapatite crystals, namely, their size and shape. As
bones from younger experimental animals with increased
bone strength have a wider variety of crystal sizes than
older animals, who have mostly large mineral crystals,
bone strength seems to be favored by greater mineral
crystal size heterogeneity [134]. An overall reduction in
crystal heterogeneity with aging is also observed in humans
[135] and in long-term bisphosphonate-treated patients
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with fragility fractures [127]. Conversely, bones from
patients treated with raloxifene, which have a significantly
reduced fracture risk [136], display greater mineralization
heterogeneity [137]. As mineral crystals grow between
collagen fibrils [138], it is possible that excessive crystal
growth damages collagen fibers, thereby affecting the tis-
sue mechanical properties. Interestingly, parathyroid hor-
mone (PTH) administration increases bone turnover as well
as bone tissue mineral crystal size heterogeneity and is
associated with improved bone mechanical strength [139].
As PTH increases bone turnover [140], it also promotes the
removal of older bone with larger mineral crystals, which
is then replaced by new bone tissue with smaller mineral
crystals, thereby increasing crystal size heterogeneity. A
higher degree of crystallinity (orderliness of the crystal
minerals) is also associated with higher bone strength and
stiffness and was shown to explain between 6.7 and 63.5 %
of the variation in the bone mechanical properties in
humans [141].

Mineral crystal growth in bone is regulated by many
factors that can either contribute to or inhibit mineral
crystal formation [142—144]. By influencing crystal growth
and maturation, the presence of some proteins seems crit-
ical in determining the inorganic properties of the bone
tissue and consequently its mechanical competence [145—
147]. Hence, changes with age in the secretion of proteins
that might be involved in the biomineralization process
[148] could have repercussions in the mineral crystal
growth pattern.

There are some data showing that exercise can improve
bone inorganic matrix quality. QCT techniques, by ana-
lyzing voxels of bone volume, are able to quantify the
amount of mineral within each voxel and provide a true
measure of the mineral density. Experimental animals
subjected to exercise training and analyzed by QCT were
shown to have a higher degree of bone matrix minerali-
zation than untrained controls [112, 114]. Whole body
vibration has been successfully used as a model to study
the effects of exercise on bone quality [149] and has shown
promising effects by increasing bone mass in athletes [150]
as well as in patients confined to bed rest [151]. Notably,
whole body vibration also increased bone tissue minerali-
zation in animal models [152]. A recent systematic review
[153] on the effects of exercise in postmenopausal women
also reports an improved degree of mineralization in
exercised women even though BMD measurements
remained unremarkable in most cases. However, exercise-
induced improvements in the inorganic bone component
seem to be not restricted to mineralization degree. There
are also findings showing that bone matrix from exercised
animals has a higher water content [55, 154], which is
assumed to confer additional biomechanical advantages
[155] as the tissue become less brittle and more able to
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accommodate the loads applied to the bone before devel-
oping micro-damage.

2.2 Bone Cellular Activity

Bone cells comprise osteoblasts, osteoclasts, and osteo-
cytes. Among these, osteocytes are the more prevalent and
have a fundamental role in regulating bone remodeling
[156]. Osteocyte apoptosis [157, 158] locally activates
osteoclasts and increases bone resorption. Decreases in
transforming growth factor (TGF)-B secretion [159],
increases in receptor activator of nuclear factor kappa-B
ligand (RANK-L) [160, 161] and macrophage colony-
stimulating factor (M-CSF) secretion [157], as well as
formation of apoptotic bodies [162], are involved in
osteoclast activation. Further, bone matrix micro-damage,
by triggering osteocyte apoptosis, leads to the recruitment
of osteoclasts, thereby increasing intra-cortical bone
remodeling [163]. Osteoclast activation therefore derives
from the loss of the constitutive inhibition of osteocytes
over osteoclasts [164] and from the release of stimulatory
factors following osteocyte death [157, 162]. Although this
mechanism promotes the renewal of damaged bone with
worse mechanical properties [163], large increases in
osteocyte death can lead to excessive bone resorption and
increased intra-cortical porosity, ultimately compromising
bone strength [165]. Osteocytes are therefore essential for
targeted bone remodeling, and several findings suggest that
damages to the osteocyte network may affect bone quality
by hindering the repair of damaged bone [166] or by pro-
moting excessive bone resorption.

In addition to recruiting osteoclasts, osteocytes also
orchestrate the formation of new bone in response to
mechanical loading by recruiting osteoblasts. This is
achieved by detecting mechanical signals, namely inter-
stitial fluid flow or direct cell strain [167, 168], and by
releasing signaling molecules, such as nitric oxide (NO)
[169], prostaglandins [170, 171], sclerostin [172], and
many others [173, 174] that modulate osteoblast activity.
NO, for instance, enhances osteoblast activity following
mechanical stimulation, and blockage of NO synthesis
inhibits mechanically induced bone formation [175, 176].
Prostaglandins are also released by osteocytes following
mechanical stimulation [177] and stimulate osteoblast
activity and bone formation [178, 179]. Osteocytes from
mechanically stimulated bones also secrete lower levels of
sclerostin [180], a negative regulator of the anabolic Wnt/
B-catenin signaling pathway [181]. Osteocytes also express
a group of proteins, known as the SIBLING (small inte-
grin-binding ligand N-linked glycoprotein) family, that
directly influence bone mineralization [182]. Matrix
extracellular phosphoglycoprotein (MEPE) expression, for
instance, a negative regulator of bone formation [183], is
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enhanced by mechanical loading [184], while dentin matrix
protein (DMP)-1 [185], a protein involved in bone miner-
alization, [186] is up-regulated by mechanical loading
[187]. Together, these findings highlight the importance of
osteocytes in the regulation of several key aspects of bone
formation and resorption. It is therefore not surprising that
there is a strong association between osteocyte density and
fracture occurrence and that ablation of osteocytes leads to
decreases in bone strength [165]. For instance, [188] a
34 % lower osteocyte density was identified in women who
would later experience spontaneous vertebral compression
fractures. Aging [189], lack of estrogen [190], use of glu-
cocorticoids [191-193], and alcohol abuse [194-197] are
all associated with loss of osteocyte viability and increases
in bone fragility. The number of empty osteocyte lacunae,
an indicator of osteocyte death, is also inversely correlated
with femur diaphysis ultimate stress in experimental ani-
mals [198].

The association between decreases in osteocyte density
and bone strength also seems to be linked to bone hydration
status. Water is responsible for some hydraulic properties
in hard tissues, and dehydrated structures have increased
brittleness [199]. Much of the bone water is estimated to
reside in the canalicular system surrounding the osteocyte
body and its dendritic projections [200, 201]. Death of
osteocytes and disruption of the peri-cellular matrix may
therefore affect hydration status, compromising bone
strength [202]. Both bone hydration [203] and osteocyte
density [189] tend to decrease with age, and mechanical
testing shows that dehydration increases bone tissue brit-
tleness and decreases its strength [155], while hydration
increases cortical bone strength 2.5-fold [204]. Age-
dependent decreases in osteocyte density are also associ-
ated with the accumulation of heavily mineralized bone
matrix within the empty lacunae [205], an event known as
micropetrosis [206]. This excessive mineralization, which,
as previously mentioned, greatly diminishes the ability of
bones to tolerate loading without developing micro-dam-
age, together with the decrease in osteocyte density, may
contribute to an increased susceptibility to damage for-
mation and failure of successful bone repair in the elderly
[189]. Collectively, these findings support the crucial role
of osteocytes as gatekeepers in the defense of bone matrix
quality and show that the maintenance of a healthy osteo-
cyte network is an absolute requirement for the safeguard
of healthy bone tissue turnover and integrity. Nevertheless,
osteocyte apoptosis is also required, to some extent, for
targeted bone remodeling and damage repair to occur, and
certainly excessive blocking of osteocyte apoptosis should
also be detrimental for bone tissue mechanical properties.

Osteocytes are highly sensitive to mechanical stimula-
tion, and their own viability relies on such stimuli, as
osteocyte death is enhanced by the lack of skeletal muscle

tension and weightlessness [207], which may be related to
decreases in oxygen diffusion and consequent osteocyte
hypoxia [208]. In turn, loading reduces the number of
apoptotic osteocytes in experimental animals by 40 %,
which was associated with an 80 % reduction in bone
resorption surface [209]. Osteocytes exposed to fluid shear
stress also show an increased expression of anti-apoptotic
genes [210]. This expression appears to rely on several
signaling pathways within the osteocyte, namely, on the
activation of integrins and subsequent signaling through
Src kinases [211] as well as by the activation of prosta-
glandin receptors and subsequent signaling through protein
kinase A or B-catenin [212]. The existence of these over-
lapping pathways highlights the importance of the rela-
tionship between mechanical loading and osteocyte
viability for skeletal homeostasis. Recent studies have also
shown that physically active ovariectomized (OVX) rats
had a significantly higher osteocyte density than sedentary
controls [198] and that physically active mice do not dis-
play the same decreases in osteocyte density with age as
sedentary counterparts [213]. Ex vivo studies with human
bone also support the hypothesis that mechanical loading
significantly reduces osteocyte apoptosis [214]. Mechani-
cal stimulation brought by exercise training seems there-
fore a favorable strategy to counteract the increase in
osteocyte apoptosis associated with ageing, estrogen loss,
inflammation, or glucocorticoids [212, 215], an outcome
that is not captured by changes in BMD and that might
influence bone resistance to fracture.

2.3 Bone Micro-Architecture

Bone biomechanical competence depends not only on the
amount of bone tissue and on its biophysical properties, but
also on its micro-architecture—the way the bone tissue is
spatially organized. With a larger surface-to-volume ratio,
trabecular bone is rapidly affected by increases in bone
resorption. Individual trabeculae become progressively
thinner, shifting from a plate-like shape to a rod-like shape
while trabecular separation increases. Progressive perfo-
ration of individual rods leads to the loss of trabecular
connectivity and reduces the number of trabeculae,
resulting in trabecular micro-architecture deterioration
[216-218]. These changes in trabecular micro-architecture
rapidly compromise bone strength in regions where tra-
becular bone predominates, such as long bone extremities
and vertebral bodies [219, 220], independently of changes
in the cortical bone shell [221]. Studies on human volun-
teers reveal average decreases of about 27 % in trabecular
bone volume (TBV) in the distal radius of women and men
aged from 20 to 90 years [222]. However, women mostly
display a decrease in trabecular number and a consequent
increase in trabecular separation, while men mostly show a

A\ Adis



H. Fonseca et al.

decrease in trabecular thickness [222]. Further, decreases
in TBV do not occur at equal rates within the same bone
region [223]. Changes in trabecular micro-architecture with
aging have a major influence on bone biomechanical
properties. A study estimating the contribution of TBV and
micro-architecture to murine vertebra compressive strength
show that they explain 91 % of compressive strength var-
iability [224]. In another study with postmenopausal
women [225], TBV and micro-architecture of the distal
radius and tibia explained 96 %, while TBV alone
explained between 37 and 67 % of the mechanical prop-
erties [226]. Moreover, trabecular bone micro-architecture
significantly influences bone strength, independently of
BMD [227]. Bone biopsies from patients with osteopenia
who had or had not experienced previous fractures showed
that, despite no differences in TBV or trabecular thickness,
patients with previous fractures had a higher trabecular
separation and a lower interconnectivity index than those
without fractures [227]. Trabecular micro-architecture
variations within the same vertebra are also shown to
correlate more strongly than BMD with the site of fracture
and the load to failure during compression testing [228,
229].

Weakening of the cortical bone compartment is also of
major importance for fragility fractures. Cortical bone
represents a substantial amount of the total bone mass,
especially in the appendicular skeleton [230], therefore
cortical micro-architecture deterioration may significantly
compromise bone strength [231]. Additionally, in elderly
individuals, the contribution of cortical bone to the femoral
neck strength is higher due to their inferior TBV [232]. In a
recent study, it was estimated that cortical porosity was
responsible for a 6 % decrease in the tibia stiffness and for
a significant transfer of the load from the cortical com-
partment to the already weakened trabecular compartment
[233]. Imbalances in bone remodeling in osteoporotic
patients is also associated with changes in the cortical bone
architecture, namely, with a progressive increase in intra-
cortical porosity. The cortical bone Haversian channel
network provides a surface for the action of osteoclasts,
which may enlarge the diameter of the channels. This
increases bone porosity and leads to cortical bone trabe-
cularization, which consequentially compromises bone
strength [234, 235]. Studies in humans have shown a
consistent relationship between increasing age and cortical
bone porosity, which, notably, was largely undetected by
aBMD measurements [234]. A comparison of cortical
porosity in young and elderly volunteers also revealed that
cortical porosity was higher in older than in young indi-
viduals despite identical BMD values [236]. These findings
show that individuals with identical BMD values can have
different cortical bone micro-architectural deterioration,
and possibly different fracture risks. Biomechanical studies
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also show that human bone stiffness correlates inversely
with cortical bone porosity [237], while cortical bone
porosity in experimental animals correlates inversely with
ultimate stress [198]. These results therefore demonstrate
that micro-architectural changes in either cortical or tra-
becular bone are responsible for significant variations in
the bone mechanical properties and, importantly, that many
of these changes may remain undetected by BMD
measurements.

Several findings suggest that exercise improves trabec-
ular and cortical bone micro-architecture, thereby enhanc-
ing bone strength in a way that may be overlooked by
BMD findings. Studies on the influence of life-long phys-
ical activity on bone quality show that physically active
men have higher vertebral and femoral neck TBV than
physically inactive men [238]. Physically active women
also have a 6.9 % higher trabecular bone density in the
distal tibia than less active women [239]. Studies on
experimental animals also confirm these observations. For
instance, mice subjected to cyclic compression loading
showed increases in TBV, trabecular number, and trabec-
ular thickness when compared with non-loaded controls
[240]. Similar findings were also observed in young or-
chidectomized mice [241], suggesting that exercise
improved trabecular bone micro-architecture even in the
absence of physiologic levels of sex steroids. These adap-
tations have been observed in both male and female
experimental animals, which suggest they are sex inde-
pendent [242]. Various protocols of exercise also seem able
to improve trabecular bone micro-architecture. Treadmill
running (10 weeks) increased TBV, number, thickness, and
connectivity and decreased trabecular separation in young
male rats [243], while 8 weeks of treadmill running was
sufficient to increase TBV in young female rats [244].
Resistance exercise (4—8 weeks) also increased TBV and
trabecular thickness in male rats, despite that no differ-
ences in BMD, assayed by DXA, were detected between
sedentary and exercise-trained animals [245]. Resistance
training was also shown to prevent decreases in TBV in the
lumbar vertebra of orchidectomized rats despite no
detectable changes in bone mineral content (BMC) or
BMD [246]. These benefits have been observed not only in
healthy but also in osteopenic experimental animals. For
instance, OVX rats submitted to whole body vibration
showed increased vertebral TBV, number, thickness, and
connectivity, improving overall biomechanical properties
[152]. Exercise is also of paramount importance for cortical
bone integrity. For instance, turkey radii deprived of
mechanical loading suffer a substantial increase in intra-
cortical porosity [247], and increases in cortical porosity
with age in both OVX and intact female rats can be pre-
vented by running-wheel exercise [198]. Exercise therefore
seems to be able to prevent age-related increases in intra-
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cortical porosity, which might be overlooked by DXA-
derived aBMD measures [236].

2.4 Bone Geometry

Bone geometry parameters such as size, shape, cortical
thickness, and cross-sectional area (CSA) are closely
related with bone strength [248] and fracture occurrence
[249]. A previous study found that fractures were more
frequent in men with lower cortical thickness but found no
association between fracture and cortical BMD [250].
Moreover, changes in cortical bone geometry, such as
increases in cortical thickness and perimeter are associated
with higher bone strength and lower fracture risk [251-
253]. Bone strength differences between African and
Caucasian postmenopausal women [254, 255], and
between older men and women [256, 257], have also been
attributed to differences in femoral shaft CSA. Cortical
perimeter is a crucial geometric parameter of bone
strength, because increasing a hollow cylinder diameter
provides exponential increases in resistance to bending and
torsion without necessary increases in bone mass [62].
Interestingly, some have argued that increases in bone
diameter seen with aging or menopause are a compensatory
mechanism for the decreases in bone mass and trabecular
architecture, thus enabling the bone to maintain its strength
[257-259]. Therefore, it is possible that the major adapta-
tions in bone geometry seen in bones that have substantial
deterioration in other parameters of bone quality may in
fact be a sign of weakened bones.

Femoral neck geometry is also relevant for bone quality,
even though there are conflicting results on how several
parameters can predict fracture risk independently of
BMD. For example, despite having lower bone mass than
Caucasian women, Japanese women have fewer femur
fractures; which has been attributed to their more favorable
femoral neck geometry [260]. This observation has led to
the development of software for DXA scanners that can
provide additional information about bone geometry (hip—
axis length, femoral neck—shaft angle, femoral neck CSA,
and cross-sectional moment of inertia [CSMI]), and to the
computation of equations that, based on these parameters,
can more accurately predict the risk of fracture [261-263].
Combination of BMD and upper femur geometry infor-
mation improves the fracture risk estimation provided by
BMD alone [264], highlighting the importance of geometry
for femoral strength. Previous studies also show that hip
fractures are more frequent in women with higher femoral
neck width, femoral shaft width, and longer femoral neck
axis [265-267]. African women also have smaller bone
widths and hip axis lengths than Caucasian women, and
these geometrical differences are also thought to be asso-
ciated with hip fracture occurrence differences between

these two populations, independent of differences in BMD
[268]. Nevertheless, others were unable to identify a rela-
tionship between femoral neck axis length and fracture risk
[269]. Neck—shaft angle and femoral neck width were also
found to be increased in those with greater fracture risk
[270]. Increases of one standard deviation in the neck—shaft
angle have been associated with 2.45 and 3.48 % increases
in fracture risk in men and women, respectively, while
increases in femoral neck width were associated with 2.15
and 2.40 % increases in fracture risk in men and women,
respectively [270]. However, neck—shaft angle and femoral
neck width were not found to be significantly associated
with hip fracture risk in another study, while an increase in
each standard deviation in hip axis length doubled the risk
of hip fracture, independent of age and BMD [271]. Forces
acting on the femoral neck after a sideways fall are also
determined by the proximal femur geometry [272], and
those with a longer femoral neck moment arm have a
greater risk of hip fracture after a sideways fall, due to a
greater concentration of forces in the femoral neck [273].
Interestingly, a recent study has identified an association
between genetic polymorphisms involved in the bone
mineralization pathway and several femoral neck geomet-
rical parameters, suggesting that both traits are intercon-
nected [274]. Anti-resorptive and anabolic drugs for
osteoporosis have also been shown to modify proximal
femur geometry, thereby increasing bone strength [275,
276].

Femoral neck and diaphysis geometry can be influ-
enced by exercise, improving bone resistance without
necessarily increasing its mass. For instance, sprinters
have a higher tibial midshaft CSA than healthy non-ath-
letes [277], and young female athletes have a thicker
cortical bone in the femoral neck than do sedentary con-
trols [278]. Moreover, differences in bone structure
between athletes and non-athletes do not necessarily
reflect differences in bone mass, as female runners were
shown to have a higher cortical bone CSA, CSMI, and
bone strength index (BSI) than age-matched controls,
despite no differences in BMD [279]. Retrospective
studies also suggest that higher levels of habitual physical
activity in young adult men [39] and pre-pubertal girls
[280] are associated with the development of a larger
femoral diaphysis cross-section. Older physically active
women also tend to have a higher radius and tibia BSI
than sedentary age-matched women [239]. Exercise
intervention trials also support these observational find-
ings. For instance, early pubertal exercise-trained girls
showed significantly higher increases in femoral neck
CSA and cortical thickness than age-matched controls
[281]. Exercise-trained postmenopausal women also
revealed a significant expansion of the bone CSA than
sedentary controls, without any relevant increases in
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aBMD [57], while the decrease of tibial-shaft strength
index in older women participating in an exercise training
program was significantly lower than in sedentary con-
trols, despite there being no difference in femoral neck
BMC between the groups [282]. Results from experi-
mental studies with exercise trained and sedentary female
rats also show that exercised animals have a higher cor-
tical thickness and higher breaking load than sedentary
animals, despite no differences whatsoever in BMC [37].
These results clearly suggest that, although exercise
training may have reduced effects on BMD, it may still
have substantial effects on other meaningful determinants
of bone resistance to fracture, namely, on bone geometry.

3 Conclusions

Despite that the diagnosis of osteoporosis is based on the
assessment of BMD, this measure is only able to provide
insight regarding the quantity of bone tissue, which is
manifestly insufficient as a measure of bone quality, given
that bone strength is dependent on a large variety of
interconnected factors. Skeletal fragility can therefore
result from problems arising from each single factor, or
from several of the individual determinants of bone
strength. Therefore, while osteoporosis (almost) always
causes increases in bone fragility, bone fragility is not
always caused just by osteoporosis (normally diagnosed
by a BMD that is —2.5 or more standard deviations lower
than the average bone mass of healthy young adults). In
other words, osteoporosis (low bone mass) should be
more accurately considered as just a feature of the disease
(skeletal fragility) and not as its synonym, as has also
been proposed previously [283]. This consideration has
major implications for all those enrolled in the treatment
of individuals who have had, or who are at risk of having,
a fragility fracture, since assessment of treatment success
should not be based merely on changes in BMD, but
preferably on the highest number of features that can
provide a more complete picture of bone strength adap-
tations. From the findings reviewed in this paper, it is
clear that bone strength depends on several determinants.
The pharmaceutical industry has achieved much progress,
showing that some drugs are able to improve bone
strength and reduce fracture risk by improving these
determinants without necessarily increasing BMD, ra-
loxifene probably being the best example. Despite some
attractive studies showing that exercise might also
improve several of the determinants for bone strength,
further investigation is warranted by those focused on the
benefits of exercise training on bone health in order to
complete the complicated mosaic by including new pieces
of knowledge.
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